
70 The Delphi Magazine Issue 71

Delphi 6: A Cross-Platform
Development Perspective
Reviewed by Dave Jewell

One of the key aspects of Delphi
6 is the ability to create new

applications using either the good
old VCL or the new-fangled Kylix-
compatible CLX library. A decision
you will have to make when creat-
ing new applications is whether to
continue with the VCL, as before,
or use CLX.

Of course, if you have clients
banging on your door begging for
Linux versions of your existing
applications, or demanding cross-
platform (Windows and Linux)
software, the decision is easy: go
for CLX, it’s designed for cross-
platform work. If you are not in that
situation, you need to think care-
fully about where your future
development path will be.

The demand for Linux applica-
tions does not seem to be as high
as some folk were hoping, espe-
cially the marketing department at
Borland. If there is going to be a sig-
nificant demand for desktop Linux
apps (as opposed to server apps),
then my guess is that it won’t be in
the very near future. Also, on the
Windows front, .NET is bearing
down upon us rapidly. We under-
stand that Borland is working very
hard on a .NET-compatible version
of Delphi. Although we have no
ideas on timescales, clearly the
sooner the better.

So, if you are going to learn a new
framework, maybe .NET would be a
more lucrative proposition. I don’t

want to sound like a party-pooper,
and the last thing I want to do is
dampen your enthusiasm for Kylix
and Linux. That said, let’s examine
the implications of working with
CLX rather than the VCL.

Deployment Issues With CLX
What about new applications?
What sort of performance hit will
you get by writing new code for
CLX instead of the VCL? What are
the deployment issues when it
comes to releasing a Windows
application, authored with Delphi
6, that’s using CLX and the Qt
classes? It’s things like this that I
want to address here, so let’s roll
up our sleeves and begin.

Creating a new CLX program is
as simple as firing up the New
Items dialog and selecting CLX
application: see Figure 1. You’ll
notice that the CLX items are
rather messily interspersed with
the ordinary VCL stuff, and the
same is true on the other tabs of
the dialog: CLX MDI Application
sitting side-by-side with MDI Appli-
cation, etc. I would have preferred
to see a two-level scheme where
you first select CLX versus VCL
(perhaps a TTabSet component at
the bottom of the dialog?) and you
then see all the items relevant to
your choice of framework.

A nice touch is that the compo-
nent palette is automatically
reconfigured when working on a

CLX application, showing only
the CLX components which are
installed. Similarly, you’ll notice
that the Property Inspector

displays a somewhat different set
of properties for TForm according
to whether you’re working on a
VCL or CLX project. Such goodies
as DefaultMonitor are obviously
Windows-specific, and CLX does
not have support for dockable
windows, so properties like Dock-
Site and events such as OnDock-
Drop, OnEndDock, will be conspicu-
ous by their absence. Under CLX,
all string properties use the
WideString type.

Yes, I know it’s a drag (pun
strictly intentional) but as I’ve said
elsewhere, my hope is that once
Borland tries to rebuild the Kylix
IDE without the benefit of Wine/
Winelib, it will buckle down and
come up with a decent docking
window implementation which
can then be made available to all
CLX clients.

A do-nothing CLX application
built with Delphi 6 weighs in at a
fairly reasonable 291Kb. Well, mas-
sive hard disks are ridiculously
cheap now, so let’s not quibble!
Using the venerable Merlin EXE
sniffer (Figure 2) we see that even
this do-nothing executable pulls in
a host of Qxxx units, including the
base Qt unit which is responsible
for interfacing with the QTINTF.DLL
library. This DLL is the Windows
equivalent of the libqtintf.so.2.2.4
Linux shared library which I’ve
mentioned in the past. As under
Kylix, its job is to map the proce-
dural, non-OOP, calls made by CLX
onto true object-oriented C++
method calls in the Qt code itself.

Actually, that’s not 100% accu-
rate. Under Linux, libqtintf.so.2.2.4
acted as a sort of go-between, con-
necting the procedural CLX calls to
the ‘real’ Qt implementation which
existed in another shared library.
Under Windows, the situation is
slightly different because the full
Qt implementation is contained
inside QTINTF.DLL. This explains

➤ Figure 1: Creating a new
CLX app is as easy as selecting
'CLX Application' from the
New Items dialog, although
it would be nice if all the
CLX items were more clearly
distinguished from the VCL
stuff.

July 2001 The Delphi Magazine 71

why libqtintf.so is around 1.5Mb in
size, whereas QTINTF.DLL is 4Mb!

The bottom line is that you must
include this 4Mb DLL when deploy-
ing CLX-built executables. If you
think about it, Borland’s decision
to put the entire Qt implementa-
tion inside QTINTF.DLL actually
makes perfect sense. Under Linux,
a typical system will almost cer-
tainly have the Qt libraries already
installed: remember that the KDE
desktop system is itself archit-
ected on top of Qt, so unless you
are the most fastidious of GNOME/
GTK+ purists, Qt will be there
somewhere. Thus, it makes sense
for Kylix applications to be
deployed with only the libqtintf.so
‘glue’ code needed to connect CLX
to the core Qt library.

Under Windows, however, the
scenario is quite different. It’s
unlikely that a high proportion of
Windows systems have the regular
(C++ callable) Qt DLL installed, and
therefore, by bundling the core Qt
code into QTINTF.DLL itself, we
have a single DLL that’s required
for deployment purposes.

Figure 3 is a screenshot taken
using Microsoft’s Dependency
Walking utility (DEPENDS.EXE)
which makes it possible to see
which DLLs are required by an
application, which DLLs are

required by the DLLs and so on, ad
nauseum! As you can see, this
clearly shows the various ‘flat-
tened’ entry points into QTINTF.DLL
which are required by the proce-
dural CLX code. Thus we have
QWidgetList_next, QWidgetList_fi-
rst, and so on (the leading under-
scores simply indicate the use of
the cdecl calling convention).

Prior to browsing the exports
from QTINTF.DLL, I had hoped that
Borland might retain the full C++
entry points, so that you could, for
example, make direct Qt calls
which bypass CLX, assuming that
you can live with the pain of
making cludgy C++ method calls
direct from Pascal, perhaps using a
judicious smattering of inline
assembler code. However, this
option definitely isn’t available to
adventurous developers, the only
QTINTF exports are the flattened
ones. Bearing in mind the stringent
licence conditions on the use of Qt
from Kylix and Delphi 6, it’s not
surprising that this particular back
door has been closed!

On the negative side, I was sur-
prised to discover that the QTINTF
library has been erroneously built
with a preferred load address of
$400000. As the Borland documen-
tation rightly states, ‘This value is
typically only changed when compil-
ing to a DLL’. Whoever built QTINTF
should have read this, since giving
the DLL the same load address as
the application guarantees that the
operating system will have to relo-
cate the DLL before program exe-
cution begins! That’s going to have

a negative effect on program
start-up time, particularly bearing
in mind the large number of
exports and fix-ups required by
QTINTF. Microsoft’s documentation
states that a non-system DLL
should have a load address
between $60000000 and $68000000.
With modern hardware, the over-
head is likely to be slight, but a
little more attention to detail
would have been nice here. If this
bothers you, you can always use
Microsoft’s command-line REBASE
program to change the load
address of the DLL.

Switching over to a packaged
CLX application brings the EXE file
size down to a very trim 15Kb, but
naturally introduces other
dependencies such as RTL60.BPL
(635Kb) and VISUALCLX60.BPL
(1Mb). As ever, the simplest
deployment option is to go with a
non-packaged executable, unless
you’re deploying a suite of fairly
large applications, all of which are
built around CLX.

Performance Issues:
CLX Versus VCL
A key concern for any developer
who carefully deposits his eggs
into the CLX basket is going to be
what sort of performance he or she
will get from using CLX. It’s surely
inevitable that there will be some
hit, because a Delphi 6 or Kylix

➤ Figure 2: Merlin (my favourite
EXE-file sniffer) demonstrates
that a surprising number of
'Q' units get linked into even
a do-nothing application.

➤ Figure 3: Here's Microsoft's
dependency-walker
application, DEPENDS,
showing all the flattened
procedure named exported
from the QTINTF library.

72 The Delphi Magazine Issue 71

application is essentially using two
different application frameworks
in tandem, CLX sat on top of Qt.

Or is it inevitable? As I’ve
pointed out in the past, Qt is a
highly optimised, high perfor-
mance class library, and Trolltech
has pointed out to me a number
of cases where using its code gives
superior performance to what
you’d get by calling the equivalent
Microsoft API routines. In order to
experiment with relative perfor-
mance figures for a VCL versus CLX
application, I devised a simplistic
testbed around the code shown in
Listing 1.

Yes, I realise that testing the
speed of drawing rectangles on
screen isn’t exactly a thorough test
of the performance of an applica-
tion framework! But even so, I
thought it’d be interesting to com-
pare the speed of drawing opera-
tions that go through the VCL �
API route versus the same thing
going through the CLX� Qt� API
route.

In case you’re not familiar with
these particular timing routines, a
few words of explanation are in
order. You’re probably familiar
with routines such as Time and Now
(from the SYSUTILS unit) and
experienced Windows API veter-
ans will also have come across

the GetTickCount routine which
you can find in WINDOWS.PAS. How-
ever, if you’re after really high reso-
lution timing, of the order of
microseconds, then QueryPerfor-
manceCounter and QueryPerform-
anceFrequency are the API routines
of choice. Each time you call
QueryPerformanceCounter, the
single var parameter will retrieve a
64-bit integer which corresponds
to the current tick count, not to be
confused with the ticks retrieved
from GetTickCount: this is a much
faster tick!

The main wrinkle here is that the
actual tick rate can vary from one
PC to another: it is a function of the
hardware-based timer, which is
actually being monitored by the
QueryPerformanceCounter routine.
You need to call QueryPerformance-
Frequency. In order to determine

the tick rate. This retrieves
another 64-bit integer which tells
us how many ticks are occurring
every second. On my venerable
500MHz Pentium III, this returns a
value of 3,.579,545. If it is to be
believed, this means that the high
resolution timer is running a little
over 3.5MHz, giving us a tick reso-
lution of around 279 nanoseconds.

Sure enough, this timer is so fast
that if you call QueryPerform-
anceCounter, and then call the
same routine again, you’ll find that
the returned counter value differs
from the first by just a few ticks,
around 7 or 8 on the aforemen-
tioned Pentium III. This means that
there’s an API-calling overhead of
around 2.2 microseconds on my
machine, running Windows 2000
Pro: this certainly sounds as if it’s
in the right ballpark. Thus, to con-
vert a time delay measured in ticks
into seconds, it’s just a matter of
dividing by the value returned
from QueryPerformanceFrequency.

The code above simply retrieves
the starting tick count, draws
10,000 filled rectangles onto the
screen and then obtains the finish-
ing tick value to calculate the
actual delay that’s taken place. As
you can see from the code, each
rectangle receives a random size,
position and colour. In the case of
the CLX code, WINDOWS.PAS natu-
rally isn’t included, so I copy/
pasted the RGB function into my
code, together with the function
declarations for QueryPerform-
anceCounter and QueryPerformance-
Frequency.

Well, what about results? This
program yielded figures for the
CLX code of around 1.15 seconds,

procedure TForm1.BitBtn1Click(Sender: TObject);
var
I: Integer;
R: TRect;
T1, T2, Freq: Int64;

begin
Randomize;
QueryPerformanceCounter (T1);
QueryPerformanceFrequency (Freq);
for I := 0 to 10000 do begin
R := Rect (Random (Width), Random (Height), Random (Width), Random (Height));
PaintBox1.Canvas.Brush.Color := RGB (Random (256), Random (256),
Random (256));

PaintBox1.Canvas.FillRect(R);
end;
QueryPerformanceCounter (T2);
Caption := FloatToStr ((T2 - T1) / Freq);

end;

➤ Listing 1

Qt 3.0: What Does The Future Hold?
It’s interesting to speculate on exactly what sort of licensing deal Borland has
with TrollTech. Is there a provision for Borland to take and use later versions
of Qt in Kylix? I only mention this because, at the time of writing, Qt 3.0 has
recently been released to beta testers and from where I’m sitting it looks very
tasty indeed.

Qt 3.0 includes a number of fascinating new features including a platform-
independent API for working with SQL databases. This database-independ-
ent API is based around a driver model, and includes drivers for Oracle, MySQL
and others. Naturally, new custom drivers can be added. The new database
API has been put to good use in a new set of data-aware controls that perform
automatic each-way synchronisation between the database and the
user-interface.

The Qt Designer is rapidly evolving into a full-blown RAD design tool in its
own right, which may well set it on a collision course with C++Builder and
Delphi/Kylix in the future. It now supports custom widgets, direct editing of
your C++ source code and also has support for the new data-aware controls.

Other Qt 3.0 goodies include multiple monitor support (including
Xinerama under Linux), a new internationalisation tool which is Unicode 3
compatible, regular expressions, support for new 64-bit hardware, direct
editing of rich-text and also support for new docking/floating windows.

It’ll be interesting to see how many of these features make their way into
future versions of Kylix. Certainly, the docking window support comes just in
time to save Borland R&D’s bacon as they remove Wine/Winelib from the
Kylix 2.0 IDE implementation.

July 2001 The Delphi Magazine 73

compared to 0.14 seconds for the
equivalent VCL program. In both
cases, I ran the program many
times, and took an average figure
for the timings. Occasionally, the
program threw up a value which
was considerably longer than the
average, and it’s reasonable to
attribute such anomalous figures
to a context switch to another
process. Matt Pietrek spent some
time running performance com-
parisons of ANSI versus Unicode
API routines (see MSDN: Under the
Hood, Periodicals 1997) and he
rightly points out that the best
way of avoiding this sort of issue
is to set your thread’s priority to
the maximum possible value like
this:

SetThreadPriority(hMyThread,

Thread_Priority_Time_Critical);

Such a thread will consume CPU
time until it voluntarily yields con-
trol to another thread or process,
thereby eliminating the anomalous
timings mentioned above.

So CLX programs are guaranteed
to execute more slowly than the
equivalent VCL code, right?
Wrong. Just for the hell of it, I
replaced the above call to FillRect
with this:

PaintBox1.Canvas.Ellipse(R);

In other words, draw 10,000 filled
ellipses rather than rectangles.
Since drawing an ellipse is more
computationally intensive than
drawing a rectangle, you’d natu-
rally expect the VCL code to be
slower, and the CLX code to be
slower still. Surprisingly, I got a
figure of 5.8 seconds for the VCL

code and only 5.4 seconds for the
CLX/Qt code. Hmmm...

Surprising though these figures
may be, they do bear out
Trolltech’s assertion that its code
can frequently provide superior
performance to Microsoft’s own
routines, another good example
being the way in which it applies
various transformations to vector-
based text characters. I’m sure
you’re familiar with the estate
agent’s motto: location, location,
location! In the realms of software
development, I suspect the equiva-
lent would be algorithms, algo-
rithms, algorithms! Ultimately, it’s
not the programming language you
use that counts, it’s the algorithms
you use which make the biggest dif-
ference to the performance of your
code, and although this is by no
means an exhaustive analysis, I can
only conclude that in real-world
applications, you’re unlikely to see
any significant performance hit
from using CLX/Qt. Indeed, you
might find just the reverse.

I don’t foresee performance as
being a problem (at least, not on
the Windows platform) when cre-
ating new CLX applications, or
porting your existing code to CLX.
A more significant problem is likely
to be the breadth of functionality
that’s available to CLX applica-
tions. As I’ve already pointed out,
docking windows are conspicuous
by their absence, although this
might change for the better if
Borland are able to use Qt 3.0 in the
next major release of Kylix, see the
Qt 3.0: What Does The Future Hold?
sidebar.

As Brian mentioned, Borland
have enhanced the conditional
compilation capabilities of the

compiler, and this will certainly be
a big help when writing code that’s
designed to be portable between
Windows and Linux. You should
also be aware of the new platform
directive (similar to the deprecated
and library directives). This is
used to indicate that a particular
declaration is platform-specific,
thus:

var
// Win2000, WinME, WinXP
LayeredWindows: Boolean
platform;

As with deprecated and library,
this directive has no effect unless
you actually refer to an identifier
which has been so marked. If you
do, the compiler will spit out an
appropriate warning to indicate
that you are doing something
platform-specific.

Conclusions
In recent discussions on CIX, a
number of folks have been poking
fun at The Gimp, which is generally
regarded (by Linux users) as
something of a flagship applica-
tion. From the perspective of a
Photoshop user, however, The
Gimp isn’t a serious tool because
of its lack of support for CMYK, and
other, even more serious limita-
tions, such as its inability to deal
with decent-sized bitmaps.

And the relevance of that com-
ment? There’s no doubt that the
Delphi 6/Kylix combination consti-
tutes a great way of getting your
applications running on a new
platform. What’s less certain is the
current level of user demand for
new Linux applications. I sincerely
hope that Kylix succeeds and that
it’s used to create a whole new
breed of killer Linux applications
that give folks a compelling reason
for moving to Linux. I’d like to see
Linux regarded as a viable plat-
form for serious desktop applica-
tions, and I’d like to see Kylix
developers creating those applica-
tions. Time will tell...

Dave Jewell is the Technical Editor
of The Delphi Magazine: contact
him at TechEditor@itecuk.com

➤ Figure 4:
My test
program
demonstrates
that the
CLX/Qt
combination
can often be
as fast as, and
sometimes
faster than,
the VCL.

	Deployment Issues With CLX
	Performance Issues: CLX Versus VCL
	Qt 3.0: What Does The Future Hold?
	Conclusions

